Sorry, you need to enable JavaScript to visit this website.

Low‐temperature growth of zno nanowires from gravure‐printed zno nanoparticle seed layers for flexible piezoelectric devices

TitoloLow‐temperature growth of zno nanowires from gravure‐printed zno nanoparticle seed layers for flexible piezoelectric devices
Tipo di pubblicazioneArticolo su Rivista peer-reviewed
Anno di Pubblicazione2021
AutoriGarcia, A.J. Lopez, Sico G., Montanino M., Defoor V., Pusty M., Mescot X., Loffredo Fausta, Villani Fulvia, Nenna G., and Ardila G.
RivistaNanomaterials
Volume11
ISSN20794991
Abstract

Zinc oxide (ZnO) nanowires (NWs) are excellent candidates for the fabrication of energy harvesters, mechanical sensors, and piezotronic and piezophototronic devices. In order to integrate ZnO NWs into flexible devices, low‐temperature fabrication methods are required that do not dam-age the plastic substrate. To date, the deposition of patterned ceramic thin films on flexible sub-strates is a difficult task to perform under vacuum‐free conditions. Printing methods to deposit functional thin films offer many advantages, such as a low cost, low temperature, high throughput, and patterning at the same stage of deposition. Among printing techniques, gravure‐based techniques are among the most attractive due to their ability to produce high quality results at high speeds and perform deposition over a large area. In this paper, we explore gravure printing as a cost‐effective high‐quality method to deposit thin ZnO seed layers on flexible polymer substrates. For the first time, we show that by following a chemical bath deposition (CBD) process, ZnO nan-owires may be grown over gravure‐printed ZnO nanoparticle seed layers. Piezo‐response force microscopy (PFM) reveals the presence of a homogeneous distribution of Zn‐polar domains in the NWs, and, by use of the data, the piezoelectric coefficient is estimated to be close to 4 pm/V. The overall results demonstrate that gravure printing is an appropriate method to deposit seed layers at a low temperature and to undertake the direct fabrication of flexible piezoelectric transducers that are based on ZnO nanowires. This work opens the possibility of manufacturing completely vacuum‐free solution‐based flexible piezoelectric devices. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Note

cited By 0

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85106613348&doi=10.3390%2fnano11061430&partnerID=40&md5=7768fceb164b966c8ede77f84c7f2d8f
DOI10.3390/nano11061430
Citation KeyLopezGarcia2021