Sorry, you need to enable JavaScript to visit this website.

Experimental and theoretical investigation of the order-disorder transformation in Ni3Al

TitoloExperimental and theoretical investigation of the order-disorder transformation in Ni3Al
Tipo di pubblicazioneArticolo su Rivista peer-reviewed
Anno di Pubblicazione1993
AutoriCardellini, F., Cleri F., Mazzone G., Montone Amelia, and Rosato V.
RivistaJournal of Materials Research
Volume8
Paginazione2504-2509
ISSN08842914
Parole chiaveActivation energy, Alloying, Aluminum compounds, Ball milling, Calorimetry, Crystal structure, Differential scanning calorimetry, Intermetallics, Mathematical models, Nickel aluminide, Nickel compounds, Order disorder transitions, Scanning electron microscopy, Strain, Thermal effects, X ray analysis, X ray diffractometry
Abstract

The crystalline disordered phase obtained by mechanical alloying of elemental 75 at. % Ni and 25 at. % Al powders has been investigated. The stability of this phase with respect to the thermal reordering process leading to the L12 structure has been analyzed by means of x-ray diffractometry, scanning electron microscopy, and differential scanning calorimetry. Atomistic simulations on an Ni3Al model, reproduced via molecular dynamics using a many-body potential, have been used to interpret experimental data. The ordering transformation takes place in an extended range of temperature (from 320 to 600 °C) and occurs simultaneously with the release of internal strain. Numerical simulations performed under different conditions show that the activation energy of the Ni-vacancy migration mechanism responsible for the ordering process depends on the local state of strain, thus suggesting an explanation for the considerable lowering of this energy in samples obtained by ball milling. © 1993, Materials Research Society. All rights reserved.

Note

cited By 41

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-0027677347&doi=10.1557%2fJMR.1993.2504&partnerID=40&md5=8406cc174bee6fc2fd038a9359ebd99a
DOI10.1557/JMR.1993.2504
Citation KeyCardellini19932504