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Abstract: Air pollution is a current problem for the environment and public health. Its impact needs
to be monitored in urban agglomerates and critical hot spots such as airports. Green aviation with low
air emissions is a sustainable goal for the future. The air pollutants are monitored by governmental
agencies that employ regulatory monitoring stations, which are very accurate but also very expensive,
bulky, and maintenance demands. On the contrary, low-cost sensor systems can offer a proper
solution to cover large areas at high spatial-temporal resolution. However, the low-cost air quality
sensors are less accurate than reference analyzers operating in the regulatory stations. To enhance
the sensor accuracy, field calibration, and data correction with reference instrumentation is a valid
strategy to improve sensor data quality. In this study, a sensor system with a selected set of air
quality gas sensors (NO2, O3) and particulate matter (PM10, PM2.5) has been developed and deployed
in a near-city space-airport at Grottaglie (Southern Italy) to perform measurements in a period of
4 months, from October 2021 to February 2022. The sensor units installed in the Airbox system
used for this measurements campaign are the GS+4NO2 (DD Scientific) for NO2 measurements, the
O3-3E1F (City Technology, Sensoric) for O3 measurements, and the NextPM (Tera Sensor) for PM10

and PM2.5 measurements. Data gathered by the low-cost air quality sensors have been compared
to reference instrumentations both co-located (ca. 1 m distance) together with low-cost sensors
(PM10, R2 > 0.87; PM2.5, R2 > 0.50) and a distributed regulatory network of 14 environmental stations
operating in the local area around space-airport at a distance ranging from 3 to 26 km.

Keywords: NO2 and O3 low-cost sensors; PM10 and PM2.5 low-cost sensors; air quality monitoring;
gas sensors and apparatus

1. Introduction

Low-cost sensor systems (LCSS) may represent a suitable technology to supplement
regulatory monitoring air quality networks [1–4] by Indicative Measurements, as contem-
plated by the European Directives on Air Quality [5]. Concentration measurements from
LCSS can support decision-making and provide citizens awareness with information on
limit values and alert thresholds for pollutants.

While low-cost electrochemical sensors are designed for a specific gas selectivity,
their response is often affected by ambient parameters and the presence of interfering
gases. Studies [6,7] have shown sensitivity for NO2 and O3 sensors, which can interfere
both by showing a higher signal and by suffocating it with a cancellation effect: the use
of the manufacturer’s calibrations can lead in some situations to unexpected negative
measurement values concentrations, and it is difficult to carry out calibrations in the
laboratory that take into account all the parameters to which the sensors are exposed when
they are operated on the field. However further, customized on-field calibrations can be
expensive and difficult to execute.
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This work reports considerations on ground measurements of a given set of sensors
for concentration evaluation of particulate matter (PM10 and PM2.5), ozone (O3), and
nitrogen dioxide (NO2) by a procedure to correct the measured concentration values of
gaseous species under test. An ENEA-designed LCSS Airbox [1,3,4], equipped with low-
cost sensors, has been positioned at the “Marcello Arlotta” airport in Taranto-Grottaglie
(Southern Italy), near the town of Grottaglie about 15 km East of Taranto. This city has a
large industrial area affected by a high load of air pollution.

2. Materials and Methods
2.1. Airbox, the Low-Cost Sensor System, and Its On-Field Positioning

The Airbox is a home-built system utilizing Raspberry micro-computer to connect
different kinds of sensors and manage their measurement data.

For the purpose of this work, the Airbox system integrated an optical particulate
matter sensor NextPM (TERA Sensor, Rousset, France), for PM10 and PM2.5 measure-
ments (the sensor also provides PM1 measurements) an electrochemical cell GS+4NO2 (DD
Scientific, Fareham, United Kingdom), for NO2 concentration measurements and an elec-
trochemical cell O3-3E1F (Sensoric, City Technology (Bonn, Germany), for O3 concentration
measurements. The manufacturer calibration curves were used for gas sensors.

The Airbox provides hourly averaged concentration values, and data are delivered if
75% of the expected measurements pass the validation procedure.

Airbox was properly installed in the area of Grottaglie airport, positioned on a balcony,
under the airport control tower (Latitude 40◦30′52.7′′ N, Longitude 17◦23′59.3′′ E) at the
height of about 12 meters above the ground.

The campaign of measurements started on 5 October 2021 and ended on 8 February
2022, with a total of 125 full calendar days.

Due to the access policies to the Airport and the restrictions related to the COVID-
19 emergency, the research staff access was limited during the measurement campaign
period according to a scheduled calendar, thus, it was not possible to intervene promptly
to evaluate operating faults.

2.2. Reference Instrumentation and Open Data from Air-Quality Regulatory Monitoring Network

The PM data were compared with reference particulate matter monitor APM-2 (Comde-
Derenda GmbH, Stahnsdorf, Germany) installed at a distance of about 1 meter: both the
suction head of the reference instrumentation and the Airbox inlet were at the same height
(approx. 1 m) from the floor.

Public data from the air quality monitoring network of the Apulia Region Environ-
mental Protection Agency, ARPA Puglia [8], were consulted to carry out an evaluation
of O3 and NO2 sensor measurements and perform an on-field data correction procedure.
ARPA Puglia makes available open data for daily averages, with a day delay, and informa-
tion from 14 fixed monitoring stations surrounding the Grottaglie Airport was gathered;
characteristics of the 14 selected stations are shown in Table 1.

NO2 measurements were available for all stations of the ARPA environmental moni-
toring station network, while 4 ARPA stations provided measurements for O3 only.

Data from the ARPA Puglia monitoring stations were summarized by calculating the
mean value for each day and identifying the minimum and maximum values.
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Table 1. Characteristics of the Airport surrounding stations of the ARPA Puglia air quality monitoring
network.

Station
Line-of-Sight Distance

[km]
Azimuth *

[◦]
Type

Pollutants of Interest in This
Work **

PM10 PM2.5 NO2 O3

Grottaglie 3.3 38.0 Urban Background + - + +
Ceglie Messapica 17.7 32.5 Urban Background + + + -

Francavilla Fontana 16.0 84.0 Urban Traffic - - + -
Taranto-Talsano 15.1 220.5 Urban Background + - + +
Taranto-San Vito 17.9 235.5 Urban Background + - + +

Taranto-Alto Adige 13.0 242.5 Urban Traffic + + + -
Taranto-Machiavelli 15.0 259.0 Industrial + + + -
Taranto-Archimede 14.3 261.0 Industrial + + + -

Taranto-CISI 12.4 273.0 Industrial + + + -
Statte-Ponte Wind 19.2 274.0 Industrial + - + -

Statte-Sorgenti 17.4 288.0 Industrial + - + -
Massafra 25.5 290.0 Industrial + - + -

Martina Franca 21.5 344.5 Urban Traffic + - + -
Cisternino 25.4 3.0 Urban Background + - + +

* Angular distance from North, measured clockwise. ** Symbols list: ‘+’ Data available; ‘-’ Data not available.

2.3. Comparison of the Measured Data and Procedure for Correcting Gas Concentrations

In order to compare Airbox data with ARPA’s measurements, 24 h mean values were
calculated for days with at least 75% validated hourly average concentrations.

As regards the PM concentrations, a comparison was made between the measurements
of the optical sensors and the reference instrumentation by evaluating the coefficient of
determination (R2) on the daily averages.

As regards the O3 and NO2 concentrations, a procedure was applied for correcting the
measurement values according to the available ARPA Puglia data. Referring to the first
21 days with validated measurements, a linear correction of the concentration values was
applied by setting equality between:

• Mean of the daily average values of the Airbox corrected measurements and mean of
the daily averages of the ARPA stations;

• Difference between the maximum and minimum values of the daily averages of
the Airbox corrected measurements and the difference between the maximum and
minimum values of the daily averages of the ARPA stations.

The procedure was applied to:

• O3 concentration values;
• NO2 concentration values from which the corrected O3 concentration values have

been subtracted to evaluate an O3 cross-sensitivity contribution.

3. Results

During the measurement campaign, the Airbox provided concentration measurements
for 113 full days, and the average daily number of validated measurements for each
pollutant exceeded 99.5% of the expected measurements. The PM reference instrumentation
provided data for 110 full days, and it was possible to compare the data with the Airbox
measurements for a total of 101 days.

Figure 1 shows (a) the PM10 daily mean concentrations time series of the NextPM
sensor compared to the PM reference instrumentation and (b) the scatter-plot chart with
the correlated daily mean values: the coefficient of determination R2 is 0.877, and the linear
regression (LR) fit using the ordinary least squares approach brings a regression slope 1.538
and a regression intercept 1.742.
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network as a reference. As described above, measurements of the O3-3E1F sensor were 
corrected using available ARPA data from the first 21 days of the measurement cam-
paign. 
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coefficient of determination R2 between the O3 sensor measurements and the ARPA data 

Figure 1. Airbox and Reference Instrumentation daily means time-series of (a) PM10 and (c) PM2.5

concentrations (background colors refer to the AQ level classification); Comparison between (b) PM10

and (d) PM2.5 daily averages of Airbox and daily means of Reference Instrumentation (darker areas
indicate a higher frequency of measurement pairs with the same mean values).

In the same manner, Figure 1 proposes (c) the PM2.5 daily mean concentrations time
series of the NextPM sensor compared to the PM reference instrumentation and (d) the
scatter-plot chart with the correlated daily mean values: in this case, the coefficient of
determination R2 is 0.504, the ordinary least squares LR fitting brings a regression slope
0.525 and a regression intercept 2.586.

Background colors on panels (a,c) of Figure 1 indicate, for each PM pollutant, the Air
Quality Index Categories classification according to [9].

Figure 2 shows the mean values of the O3 concentrations after the correction procedure,
which used the mean of the daily means of the stations of the ARPA monitoring network
as a reference. As described above, measurements of the O3-3E1F sensor were corrected
using available ARPA data from the first 21 days of the measurement campaign.
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Figure 2. Comparison of the Ozone (O3) corrected daily mean concentrations, using a 21-day fixing
period (highlighted in light yellow), and the ARPA’s monitoring network (up to 4 stations). Light
gray belt represents the range between the minimum and maximum values of the measurement
values of the ARPA monitoring network.

Over this 21-day period, highlighted with a yellow background in Figure 2, the
coefficient of determination R2 between the O3 sensor measurements and the ARPA data
summarized as a reference was 0.415, while the slope and intercept of the linear correction
procedure were 0.762 and 31.339, respectively.
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In the same manner, Figure 3 shows the results of the correction procedure of the
NO2 concentrations of the GS+4NO2 sensor: in this case, the O3 corrected values of
concentration were subtracted from the NO2 daily mean values in order to evaluate possible
cross-sensitivity dependence. The coefficients of determination R2 between the NO2 sensor
measurements, before and after O3 subtraction, and the ARPA data summarized as a
reference were 0.047 and 0.020. This low correlation sensor-vs-analyzer is affected by
the high cross-sensitivity of both oxidizing gases. The slope and intercept of the linear
correction procedure were 1.690 and −68.261, respectively.
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a 21-day fixing period (highlighted in light yellow) and the ARPA’s monitoring network (up to
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In both Figures 2 and 3, ARPA data were also represented outside the first 21-day
period, during which they played an active role in the correction process to provide a
qualitative comparison.

4. Summary and Conclusions

In this work, low-cost sensors for the measurement of PM10, O3, and NO2 gas concen-
trations have been tested at Grottaglie airport with a measurement campaign performed
using the manufacturer calibration only. The tested PM optical sensor (NextPM) allowed us
to obtain good concentration estimates, especially for PM10. The use of gas sensors without
a comparison with reference instrumentation presents known calibration issues, and an
on-field correction procedure of the measurement concentrations has been attempted by
referring to the open data of a regulatory network of air quality monitoring stations.

The proposed procedure of concentration correction showed estimates closer to the
concentration trends in the area under test, but it needs a formulation that takes into
account more environmental parameters and additional interfering pollutant gases.

Future work is planned to refine the correction procedure for enhanced air quality
sensor calibration.
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