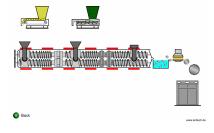
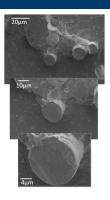


Roberto Terzi

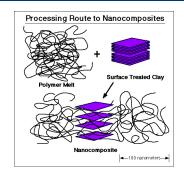



Sviluppo di compound termoplastici

Compound PP/PA6 e fibre di basalto per applicazioni nel settore dei trasporti

fibre di basalto

Compound PA6/Basalto in granuli



Sviluppo di nanocompositi termoplastici resistenti al fuoco – Prog. Strategico regionale INCOR

Nanocompositi a matrice termoplastica con

- > Buone caratteristiche meccaniche
- Elevate caratteristiche di resistenza al fuoco (UL 94, ISO 5660)
- Elevata resistenza ai solventi
- ► Processabili per Rotational Moulding (FDM)
- Fabbricazione di oggetti cavi di grosse dimensioni

Polipropilene (Moplen® HP540J), Poliammide 6 (Ultramid® B40), Poliammide 66 (Ultramid® B32), Poliammide semiaromatica (Durethan® T40 – LANXESS), Polibutilentereftalato (PBT Ultradur® B2550 - BASF), Dellite® HPS, 43B, 72T, 67G

Impianto di estrusione bivite

Prototipo di contenitore per liquidi infiammabili in PA6 Nanocomposito

I compound per la stampa FDM:

Progetto SIADD "Soluzioni Innovative per la qualità e la sostenibilità dei processi di ADDitive manufacturing" ARS 01_00806 – Fabbrica intelligente nel PNR 2015-2020 – Capofila DTA

Obiettivi del progetto:

Sviluppo di processi di **Manifattura Additiva** per metalli e compositi per la produzione industriale di componenti e strutture a geometria complessa in ambito aeronautico.

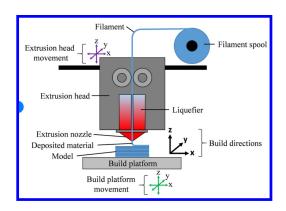
Qualità e sostenibilità dei processi di AM In termini di:

- ➤ Maggiore qualità del prodotto finito (Materiale, Processo)
- ➤ Minore produzione di inquinanti
- **➤ Minor consumo di risorse**
- **≻**Sicurezza di processo
- >Benessere operativo

Sviluppo di compound a matrice termoplastica per la stampa FDM

L'obiettivo primario del mondo aerospace, è sicuramente quello di

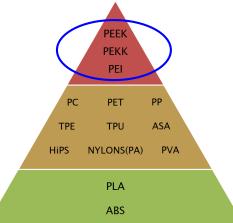
- ≻ridurre i pesi dei propri velivoli con parti più leggere
- >mantenere alti standard prestazionali dei componenti prodotti.


Dimostratori individuati

- Attuatore con Stelo metallico con ricroprimento in Composito per AFP
- Carter di un attuatore elettromeccanico in composito per AFP
- Rotore di un motore elettrico in composito per AFP o FDM

REQUISITI RICHIESTI AI MATERIALI PER LA STAMPA FDM DI COMPONENTI AERONAUTICI

- Elevate proprietà meccaniche
- Elevata resistenza ai solventi
- Resistenza alla temperatura
- Buona processabilità per la stampa FDM
- Elevate proprietà di adesione del composito a substrati metalliche
- Elevata resistenza all'usura



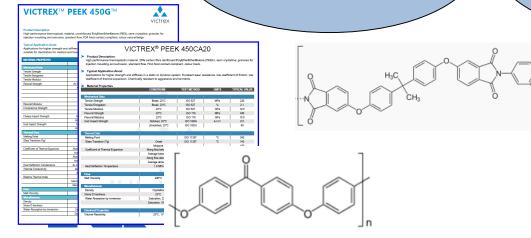
Engineering Plastics

Structural purpose applications

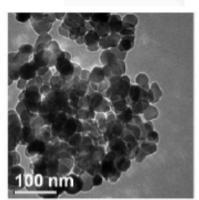
Standard plastics
Non-critical applications

I materiali di partenza e le formulazioni

- **➤ Migliore adesione CF/Matrice**
- ➤ Migliore adesione Composito/Metallo
- **≻**Migliorare processabilità


Maggiore resistenza all'usura

Polietereeterechetone PEEK Victrex 450 CA 20


Polietereimmide PEI SABIC (Ultem 1010)

Nano Zirconia (30 nm) Alroko

Details This material has the highest heat resistan compared to other FDM thermoplastics. It is a grade. It has broad application in custom tools		
compared to other FDM thermoplastics. It is a grade. It has broad application in custom tools		
tools and temperature resistant dies.		erent, opaque and glass-fille
Key Features		
High heat resistance • Resistant to chemicals.		
Thermal Properties		
Property	Value	
Heat deflection (°C)	200	
Glass transition temperature [°C]	216	-
Vicat softening temperature [°C]	215	-
Vicat softening temperature (°C) Coefficient of thermal expansion (K-1 - 10-6)	215 50	
Coefficient of thermal expansion [K-1 - 10-6]	50	
Coefficient of thermal expansion [K-1 · 10-6] Thermal conductivity [W/m · K]	50	
Coefficient of thermal expansion [K-1 - 10-6] Thermal conductivity [W/m · K] Specific heat capacity [J/kg · K]	50 0.21 2000	
Coefficient of thermal expansion [K-1 - 10-6] Thermal conductivity [W/m · K] Specific heat capacity [J/kg · K] Melting point [°C]	50 0.21 2000	
Coefficient of thermal expansion (K·1 - 10-6) Thermal conductivity (W/m · K) Specific heat capacity (J/kg · K) Melting point [°C] Mechanical Properties	50 0.21 2000 340	
Coefficient of thermal expansion (k·1 · 10·6) Thermal conductivity (Wim · K) Specific heat capacity (B/g · K) Melting point (I'C) Mechanical Properties Property	50 0.21 2000 340 Value	

Principali caratteristiche dei materiali di partenza

BENCHMARK: SOLVAY KETASPIRE KT820 CF10

KetaSpire® PEEK

Design & Processing Guide

Set formulazioni

PEEK 450 CA 20 / PEI (80/20)

PEEK 450 CA 20 / PEI (70/30)

PEEK 450 CA20 / nano ZrO2 (95/5), 30 nm

	E [GPa]	Tensile Strength (MPa)	Melting point (°C)	Tg (°C)	Melt viscosity (Pa s)
PEEK Solvay Ketaspire CF 10 LS1	11	140	343		
PEEK VICTREX 450 G	4	98	343	143	350
PEEK VICTREX 450 CA 20	19.5	230	343	143	525
PEI Ultem 1010	3.2	110	340	216	25 cm^3/10 min

		Composizione		
Matariala composita		CF	Filler	
	Materiale composito	%	%	
1	Carbon PEEK Solvay Ketaspire KT820 CF10	10	-	
2	Carbon PEEK Victrex 450CA20	20	-	
3	C-PEEK 450CA20/PEI:80/20	16	20	
4	C-PEEK 450CA20/PEI:70/30	14	30	
5	C-PEEK 450CA20/ZrO ₂ :95/5	≈20	5	

Preparazione a batch via melt compounding di blend PEEK/PEI e PEEK/nZrO2

Victrex 450 CA20

Nano Zirconia

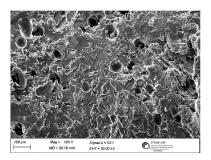
MIXER HAAKE PolyLab QC

Parametri di miscelazione

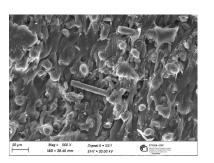
- Essiccazione 85°C/ 6 h in aria
- Temperatura di miscelazione = 370°C
- Velocità rotori = 60 rpm
- Tempo di processo = 10 min

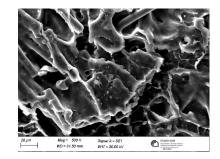
PEEK/PEI (70/30)

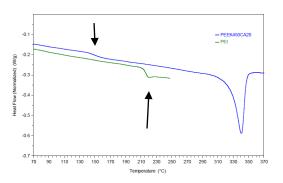
PEEK/nano ZrO2



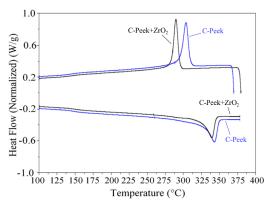
PEEK/PEI (80/20)



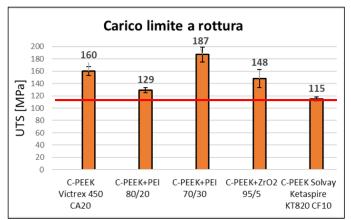

Analisi calorimetrica e morfologica dei compound PEEK/PEI e PEEK/nanoZrO2

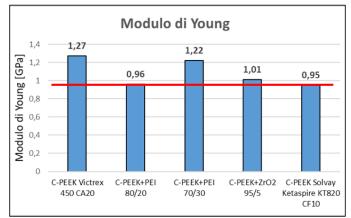

Victrex 450 CA20/PEI 70/30

Victrex 450 CA 20



Victrex 450 CA20/nano ZrO2 95/5




PEEK/PEI/ZrO2 (%)	100/0	80/20	70/30	95/0/5
Tg (°C)	149.0	170.9	176.8	216.1
Tc (°C)	303.6	293.6	294.2	289.5
Tm (°C)	343.1	338.4	338.9	339.1
Xc*	30.4	26.2	31.3	26.6

Caratterizzazione meccanica dei compound sviluppati

Provino ISO527*	E [GPa]			UTS [MPa]		
C_PEEK	1,27	±	0,27	160	±	7
C_PEEK_PEI20%	0,96	±	0,04	129	±	4
C_PEEK_PEI30%	1,22	±	0,11	187	±	12
C_PEEK_ZrO2	1,01	±	0,04	148	±	15
C_PEEK_Solvay	0,95	±	0,06	115	±	3

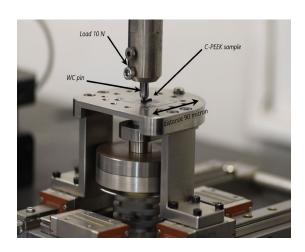
Estrusione dei compound per la preparazione dei filamenti per FDM

Parametro di processo	Unità	Valore
Alimentazione	°C	380
Compressione	°C	394
Trasporto	°C	390
Filiera	°C	386
Melt	°C	392
Pressione di estrusione	Bar	82
Velocità di rotazione della vite	RPM	18
Velocità di estrusione	m/min	7

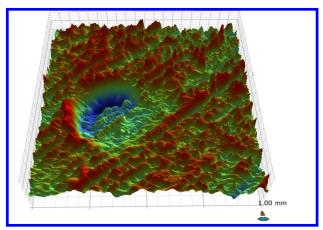
C-PEEK+5% n ZrO₂

C-PEEK+PEI 20%

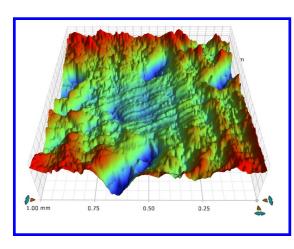
Verifica della processabilità mediante test di stampa



Stampa dei provini di trazione su stampante Argo 350 su specifiche ENEA



Fretting Test sul composito ibrido Carbon PEEK/nano Zirconia

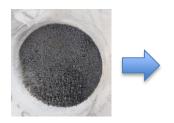

time = 3 h Load = 10 N F = 60 Hz L = 90 μm

Carbon PEEK

$$\Delta h = 6.6 \mu m$$

 $\Delta x = 0.5 mm$

Carbon PEEK/nano Zirconia


$$\Delta h = 0.58 \mu m$$

 $\Delta x = 0.5 mm$

Riduzione di un fattore 10 della profondità dell'impronta

Produzione di filamenti con rCF (brev. ENEA) e stampa FDM dei filamenti prodotti

(rif. prog. AMICO PON "Ricerca e Innovazione" 2014-2020)

Miscela meccanica PLA/rCF

Sistema estrusione

Provino di stampa 3D con il filamento PLA/rCF prodotto

Filamento PLA/rCF 20% wt

Laboratorio Materiali Funzionali e Tecnologie per Applicazioni Sostenibili roberto.terzi@enea.it

